Structure-activity relationships of galabioside derivatives as inhibitors of E. coli and S. suis adhesins: nanomolar inhibitors of S. suis adhesins.

نویسندگان

  • Jörgen Ohlsson
  • Andreas Larsson
  • Sauli Haataja
  • Jenny Alajääski
  • Peter Stenlund
  • Jerome S Pinkner
  • Scott J Hultgren
  • Jukka Finne
  • Jan Kihlberg
  • Ulf J Nilsson
چکیده

Four collections of Gal alpha1-4Gal derivatives were synthesised and evaluated as inhibitors of the PapG class II adhesin of uropathogenic Escherichia coli and of the P(N) and P(O) adhesins of Streptococcus suis strains. Galabiosides carrying aromatic structures at C1, methoxyphenyl O-galabiosides in particular, were identified as potent inhibitors of the PapG adhesin. Phenylurea derivatisation at C3' and methoxymethylation at O2' of galabiose provided inhibitors of the S. suis strains type P(N) adhesin with remarkably high affinities (30 and 50 nM, respectively). In addition, quantitative structure-activity relationship models for E. coli PapG adhesin and S. suis adhesin type P(O) were developed using multivariate data analysis. The inhibitory lead structures constitute an advancement towards high-affinity inhibitors as potential anti-adhesion therapeutic agents targeting bacterial infections.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bacterial Adhesion of Streptococcus suis to Host Cells and Its Inhibition by Carbohydrate Ligands

Streptococcus suis is a Gram-positive bacterium, which causes sepsis and meningitis in pigs and humans. This review examines the role of known S. suis virulence factors in adhesion and S. suis carbohydrate-based adhesion mechanisms, as well as the inhibition of S. suis adhesion by anti-adhesion compounds in in vitro assays. Carbohydrate-binding specificities of S. suis have been identified, and...

متن کامل

Immunization with SsEno fails to protect mice against challenge with Streptococcus suis serotype 2.

In our ongoing efforts to develop a vaccine against Streptococcus suis infection, we tested the potential of S. suis enolase (SsEno), a recently described S. suis adhesin with fibronectin-binding activity, as a vaccine candidate in a mouse model of S. suis-induced septicemia and meningitis. Here, we show that SsEno is highly recognized by sera from convalescent pigs and is highly immunogenic in...

متن کامل

The type II histidine triad protein HtpsC is a novel adhesion with the involvement of Streptococcus suis virulence.

Streptococcal histidine triad proteins HTPs are widely distributed within the Streptococcus genus. Based on the phylogenetic relationship and domain composition, HTPs are classified into type I and type II subfamilies. Previous studies revealed that several pathogenic streptococci contain more than one htp gene. We found that the highly virulent strain of Streptococcus suis 2 (S. suis 2), 05ZYH...

متن کامل

Selective COX-2 Inhibitors: A Review of Their Structure-Activity Relationships

Non-steroidal anti-inflammatory drugs (NSAIDs) are the competitive inhibitors of cyclooxygenase (COX), the enzyme which mediates the bioconversion of arachidonic acid to inflammatory prostaglandins (PGs). Their use is associated with the side effects such as gastrointestinal and renal toxicity. The therapeutic anti-inflammatory action of NSAIDs is produced by the inhibition of COX-2, while the ...

متن کامل

Selective COX-2 Inhibitors: A Review of Their Structure-Activity Relationships

Non-steroidal anti-inflammatory drugs (NSAIDs) are the competitive inhibitors of cyclooxygenase (COX), the enzyme which mediates the bioconversion of arachidonic acid to inflammatory prostaglandins (PGs). Their use is associated with the side effects such as gastrointestinal and renal toxicity. The therapeutic anti-inflammatory action of NSAIDs is produced by the inhibition of COX-2, while the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Organic & biomolecular chemistry

دوره 3 5  شماره 

صفحات  -

تاریخ انتشار 2005